3.400 \(\int (d+e x^r)^3 (a+b \log (c x^n)) \, dx\)

Optimal. Leaf size=169 \[ d^3 x \left (a+b \log \left (c x^n\right )\right )+\frac {3 d^2 e x^{r+1} \left (a+b \log \left (c x^n\right )\right )}{r+1}+\frac {3 d e^2 x^{2 r+1} \left (a+b \log \left (c x^n\right )\right )}{2 r+1}+\frac {e^3 x^{3 r+1} \left (a+b \log \left (c x^n\right )\right )}{3 r+1}-b d^3 n x-\frac {3 b d^2 e n x^{r+1}}{(r+1)^2}-\frac {3 b d e^2 n x^{2 r+1}}{(2 r+1)^2}-\frac {b e^3 n x^{3 r+1}}{(3 r+1)^2} \]

[Out]

-b*d^3*n*x-3*b*d^2*e*n*x^(1+r)/(1+r)^2-3*b*d*e^2*n*x^(1+2*r)/(1+2*r)^2-b*e^3*n*x^(1+3*r)/(1+3*r)^2+d^3*x*(a+b*
ln(c*x^n))+3*d^2*e*x^(1+r)*(a+b*ln(c*x^n))/(1+r)+3*d*e^2*x^(1+2*r)*(a+b*ln(c*x^n))/(1+2*r)+e^3*x^(1+3*r)*(a+b*
ln(c*x^n))/(1+3*r)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 141, normalized size of antiderivative = 0.83, number of steps used = 2, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {244, 2313} \[ \left (\frac {3 d^2 e x^{r+1}}{r+1}+d^3 x+\frac {3 d e^2 x^{2 r+1}}{2 r+1}+\frac {e^3 x^{3 r+1}}{3 r+1}\right ) \left (a+b \log \left (c x^n\right )\right )-\frac {3 b d^2 e n x^{r+1}}{(r+1)^2}-b d^3 n x-\frac {3 b d e^2 n x^{2 r+1}}{(2 r+1)^2}-\frac {b e^3 n x^{3 r+1}}{(3 r+1)^2} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^r)^3*(a + b*Log[c*x^n]),x]

[Out]

-(b*d^3*n*x) - (3*b*d^2*e*n*x^(1 + r))/(1 + r)^2 - (3*b*d*e^2*n*x^(1 + 2*r))/(1 + 2*r)^2 - (b*e^3*n*x^(1 + 3*r
))/(1 + 3*r)^2 + (d^3*x + (3*d^2*e*x^(1 + r))/(1 + r) + (3*d*e^2*x^(1 + 2*r))/(1 + 2*r) + (e^3*x^(1 + 3*r))/(1
 + 3*r))*(a + b*Log[c*x^n])

Rule 244

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n)^p, x], x] /; FreeQ[{a, b, n},
x] && IGtQ[p, 0]

Rule 2313

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = IntHide[(d +
 e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]] /; FreeQ[{a,
b, c, d, e, n, r}, x] && IGtQ[q, 0]

Rubi steps

\begin {align*} \int \left (d+e x^r\right )^3 \left (a+b \log \left (c x^n\right )\right ) \, dx &=\left (d^3 x+\frac {3 d^2 e x^{1+r}}{1+r}+\frac {3 d e^2 x^{1+2 r}}{1+2 r}+\frac {e^3 x^{1+3 r}}{1+3 r}\right ) \left (a+b \log \left (c x^n\right )\right )-(b n) \int \left (d^3+\frac {3 d^2 e x^r}{1+r}+\frac {3 d e^2 x^{2 r}}{1+2 r}+\frac {e^3 x^{3 r}}{1+3 r}\right ) \, dx\\ &=-b d^3 n x-\frac {3 b d^2 e n x^{1+r}}{(1+r)^2}-\frac {3 b d e^2 n x^{1+2 r}}{(1+2 r)^2}-\frac {b e^3 n x^{1+3 r}}{(1+3 r)^2}+\left (d^3 x+\frac {3 d^2 e x^{1+r}}{1+r}+\frac {3 d e^2 x^{1+2 r}}{1+2 r}+\frac {e^3 x^{1+3 r}}{1+3 r}\right ) \left (a+b \log \left (c x^n\right )\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.24, size = 159, normalized size = 0.94 \[ x \left (\frac {3 d^2 e x^r \left (a+b \log \left (c x^n\right )\right )}{r+1}+\frac {3 d e^2 x^{2 r} \left (a+b \log \left (c x^n\right )\right )}{2 r+1}+\frac {e^3 x^{3 r} \left (a+b \log \left (c x^n\right )\right )}{3 r+1}+a d^3+b d^3 \log \left (c x^n\right )-b d^3 n-\frac {3 b d^2 e n x^r}{(r+1)^2}-\frac {3 b d e^2 n x^{2 r}}{(2 r+1)^2}-\frac {b e^3 n x^{3 r}}{(3 r+1)^2}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^r)^3*(a + b*Log[c*x^n]),x]

[Out]

x*(a*d^3 - b*d^3*n - (3*b*d^2*e*n*x^r)/(1 + r)^2 - (3*b*d*e^2*n*x^(2*r))/(1 + 2*r)^2 - (b*e^3*n*x^(3*r))/(1 +
3*r)^2 + b*d^3*Log[c*x^n] + (3*d^2*e*x^r*(a + b*Log[c*x^n]))/(1 + r) + (3*d*e^2*x^(2*r)*(a + b*Log[c*x^n]))/(1
 + 2*r) + (e^3*x^(3*r)*(a + b*Log[c*x^n]))/(1 + 3*r))

________________________________________________________________________________________

fricas [B]  time = 0.53, size = 983, normalized size = 5.82 \[ \frac {{\left (36 \, b d^{3} r^{6} + 132 \, b d^{3} r^{5} + 193 \, b d^{3} r^{4} + 144 \, b d^{3} r^{3} + 58 \, b d^{3} r^{2} + 12 \, b d^{3} r + b d^{3}\right )} x \log \relax (c) + {\left (36 \, b d^{3} n r^{6} + 132 \, b d^{3} n r^{5} + 193 \, b d^{3} n r^{4} + 144 \, b d^{3} n r^{3} + 58 \, b d^{3} n r^{2} + 12 \, b d^{3} n r + b d^{3} n\right )} x \log \relax (x) - {\left (36 \, {\left (b d^{3} n - a d^{3}\right )} r^{6} + 132 \, {\left (b d^{3} n - a d^{3}\right )} r^{5} + b d^{3} n + 193 \, {\left (b d^{3} n - a d^{3}\right )} r^{4} - a d^{3} + 144 \, {\left (b d^{3} n - a d^{3}\right )} r^{3} + 58 \, {\left (b d^{3} n - a d^{3}\right )} r^{2} + 12 \, {\left (b d^{3} n - a d^{3}\right )} r\right )} x + {\left ({\left (12 \, b e^{3} r^{5} + 40 \, b e^{3} r^{4} + 51 \, b e^{3} r^{3} + 31 \, b e^{3} r^{2} + 9 \, b e^{3} r + b e^{3}\right )} x \log \relax (c) + {\left (12 \, b e^{3} n r^{5} + 40 \, b e^{3} n r^{4} + 51 \, b e^{3} n r^{3} + 31 \, b e^{3} n r^{2} + 9 \, b e^{3} n r + b e^{3} n\right )} x \log \relax (x) + {\left (12 \, a e^{3} r^{5} - b e^{3} n - 4 \, {\left (b e^{3} n - 10 \, a e^{3}\right )} r^{4} + a e^{3} - 3 \, {\left (4 \, b e^{3} n - 17 \, a e^{3}\right )} r^{3} - {\left (13 \, b e^{3} n - 31 \, a e^{3}\right )} r^{2} - 3 \, {\left (2 \, b e^{3} n - 3 \, a e^{3}\right )} r\right )} x\right )} x^{3 \, r} + 3 \, {\left ({\left (18 \, b d e^{2} r^{5} + 57 \, b d e^{2} r^{4} + 68 \, b d e^{2} r^{3} + 38 \, b d e^{2} r^{2} + 10 \, b d e^{2} r + b d e^{2}\right )} x \log \relax (c) + {\left (18 \, b d e^{2} n r^{5} + 57 \, b d e^{2} n r^{4} + 68 \, b d e^{2} n r^{3} + 38 \, b d e^{2} n r^{2} + 10 \, b d e^{2} n r + b d e^{2} n\right )} x \log \relax (x) + {\left (18 \, a d e^{2} r^{5} - b d e^{2} n - 3 \, {\left (3 \, b d e^{2} n - 19 \, a d e^{2}\right )} r^{4} + a d e^{2} - 4 \, {\left (6 \, b d e^{2} n - 17 \, a d e^{2}\right )} r^{3} - 2 \, {\left (11 \, b d e^{2} n - 19 \, a d e^{2}\right )} r^{2} - 2 \, {\left (4 \, b d e^{2} n - 5 \, a d e^{2}\right )} r\right )} x\right )} x^{2 \, r} + 3 \, {\left ({\left (36 \, b d^{2} e r^{5} + 96 \, b d^{2} e r^{4} + 97 \, b d^{2} e r^{3} + 47 \, b d^{2} e r^{2} + 11 \, b d^{2} e r + b d^{2} e\right )} x \log \relax (c) + {\left (36 \, b d^{2} e n r^{5} + 96 \, b d^{2} e n r^{4} + 97 \, b d^{2} e n r^{3} + 47 \, b d^{2} e n r^{2} + 11 \, b d^{2} e n r + b d^{2} e n\right )} x \log \relax (x) + {\left (36 \, a d^{2} e r^{5} - b d^{2} e n - 12 \, {\left (3 \, b d^{2} e n - 8 \, a d^{2} e\right )} r^{4} + a d^{2} e - {\left (60 \, b d^{2} e n - 97 \, a d^{2} e\right )} r^{3} - {\left (37 \, b d^{2} e n - 47 \, a d^{2} e\right )} r^{2} - {\left (10 \, b d^{2} e n - 11 \, a d^{2} e\right )} r\right )} x\right )} x^{r}}{36 \, r^{6} + 132 \, r^{5} + 193 \, r^{4} + 144 \, r^{3} + 58 \, r^{2} + 12 \, r + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x^r)^3*(a+b*log(c*x^n)),x, algorithm="fricas")

[Out]

((36*b*d^3*r^6 + 132*b*d^3*r^5 + 193*b*d^3*r^4 + 144*b*d^3*r^3 + 58*b*d^3*r^2 + 12*b*d^3*r + b*d^3)*x*log(c) +
 (36*b*d^3*n*r^6 + 132*b*d^3*n*r^5 + 193*b*d^3*n*r^4 + 144*b*d^3*n*r^3 + 58*b*d^3*n*r^2 + 12*b*d^3*n*r + b*d^3
*n)*x*log(x) - (36*(b*d^3*n - a*d^3)*r^6 + 132*(b*d^3*n - a*d^3)*r^5 + b*d^3*n + 193*(b*d^3*n - a*d^3)*r^4 - a
*d^3 + 144*(b*d^3*n - a*d^3)*r^3 + 58*(b*d^3*n - a*d^3)*r^2 + 12*(b*d^3*n - a*d^3)*r)*x + ((12*b*e^3*r^5 + 40*
b*e^3*r^4 + 51*b*e^3*r^3 + 31*b*e^3*r^2 + 9*b*e^3*r + b*e^3)*x*log(c) + (12*b*e^3*n*r^5 + 40*b*e^3*n*r^4 + 51*
b*e^3*n*r^3 + 31*b*e^3*n*r^2 + 9*b*e^3*n*r + b*e^3*n)*x*log(x) + (12*a*e^3*r^5 - b*e^3*n - 4*(b*e^3*n - 10*a*e
^3)*r^4 + a*e^3 - 3*(4*b*e^3*n - 17*a*e^3)*r^3 - (13*b*e^3*n - 31*a*e^3)*r^2 - 3*(2*b*e^3*n - 3*a*e^3)*r)*x)*x
^(3*r) + 3*((18*b*d*e^2*r^5 + 57*b*d*e^2*r^4 + 68*b*d*e^2*r^3 + 38*b*d*e^2*r^2 + 10*b*d*e^2*r + b*d*e^2)*x*log
(c) + (18*b*d*e^2*n*r^5 + 57*b*d*e^2*n*r^4 + 68*b*d*e^2*n*r^3 + 38*b*d*e^2*n*r^2 + 10*b*d*e^2*n*r + b*d*e^2*n)
*x*log(x) + (18*a*d*e^2*r^5 - b*d*e^2*n - 3*(3*b*d*e^2*n - 19*a*d*e^2)*r^4 + a*d*e^2 - 4*(6*b*d*e^2*n - 17*a*d
*e^2)*r^3 - 2*(11*b*d*e^2*n - 19*a*d*e^2)*r^2 - 2*(4*b*d*e^2*n - 5*a*d*e^2)*r)*x)*x^(2*r) + 3*((36*b*d^2*e*r^5
 + 96*b*d^2*e*r^4 + 97*b*d^2*e*r^3 + 47*b*d^2*e*r^2 + 11*b*d^2*e*r + b*d^2*e)*x*log(c) + (36*b*d^2*e*n*r^5 + 9
6*b*d^2*e*n*r^4 + 97*b*d^2*e*n*r^3 + 47*b*d^2*e*n*r^2 + 11*b*d^2*e*n*r + b*d^2*e*n)*x*log(x) + (36*a*d^2*e*r^5
 - b*d^2*e*n - 12*(3*b*d^2*e*n - 8*a*d^2*e)*r^4 + a*d^2*e - (60*b*d^2*e*n - 97*a*d^2*e)*r^3 - (37*b*d^2*e*n -
47*a*d^2*e)*r^2 - (10*b*d^2*e*n - 11*a*d^2*e)*r)*x)*x^r)/(36*r^6 + 132*r^5 + 193*r^4 + 144*r^3 + 58*r^2 + 12*r
 + 1)

________________________________________________________________________________________

giac [B]  time = 0.33, size = 374, normalized size = 2.21 \[ \frac {3 \, b d^{2} n r x x^{r} e \log \relax (x)}{r^{2} + 2 \, r + 1} + b d^{3} n x \log \relax (x) + \frac {6 \, b d n r x x^{2 \, r} e^{2} \log \relax (x)}{4 \, r^{2} + 4 \, r + 1} + \frac {3 \, b d^{2} n x x^{r} e \log \relax (x)}{r^{2} + 2 \, r + 1} - b d^{3} n x - \frac {3 \, b d^{2} n x x^{r} e}{r^{2} + 2 \, r + 1} + b d^{3} x \log \relax (c) + \frac {3 \, b d^{2} x x^{r} e \log \relax (c)}{r + 1} + \frac {3 \, b n r x x^{3 \, r} e^{3} \log \relax (x)}{9 \, r^{2} + 6 \, r + 1} + \frac {3 \, b d n x x^{2 \, r} e^{2} \log \relax (x)}{4 \, r^{2} + 4 \, r + 1} + a d^{3} x - \frac {3 \, b d n x x^{2 \, r} e^{2}}{4 \, r^{2} + 4 \, r + 1} + \frac {3 \, a d^{2} x x^{r} e}{r + 1} + \frac {3 \, b d x x^{2 \, r} e^{2} \log \relax (c)}{2 \, r + 1} + \frac {b n x x^{3 \, r} e^{3} \log \relax (x)}{9 \, r^{2} + 6 \, r + 1} - \frac {b n x x^{3 \, r} e^{3}}{9 \, r^{2} + 6 \, r + 1} + \frac {3 \, a d x x^{2 \, r} e^{2}}{2 \, r + 1} + \frac {b x x^{3 \, r} e^{3} \log \relax (c)}{3 \, r + 1} + \frac {a x x^{3 \, r} e^{3}}{3 \, r + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x^r)^3*(a+b*log(c*x^n)),x, algorithm="giac")

[Out]

3*b*d^2*n*r*x*x^r*e*log(x)/(r^2 + 2*r + 1) + b*d^3*n*x*log(x) + 6*b*d*n*r*x*x^(2*r)*e^2*log(x)/(4*r^2 + 4*r +
1) + 3*b*d^2*n*x*x^r*e*log(x)/(r^2 + 2*r + 1) - b*d^3*n*x - 3*b*d^2*n*x*x^r*e/(r^2 + 2*r + 1) + b*d^3*x*log(c)
 + 3*b*d^2*x*x^r*e*log(c)/(r + 1) + 3*b*n*r*x*x^(3*r)*e^3*log(x)/(9*r^2 + 6*r + 1) + 3*b*d*n*x*x^(2*r)*e^2*log
(x)/(4*r^2 + 4*r + 1) + a*d^3*x - 3*b*d*n*x*x^(2*r)*e^2/(4*r^2 + 4*r + 1) + 3*a*d^2*x*x^r*e/(r + 1) + 3*b*d*x*
x^(2*r)*e^2*log(c)/(2*r + 1) + b*n*x*x^(3*r)*e^3*log(x)/(9*r^2 + 6*r + 1) - b*n*x*x^(3*r)*e^3/(9*r^2 + 6*r + 1
) + 3*a*d*x*x^(2*r)*e^2/(2*r + 1) + b*x*x^(3*r)*e^3*log(c)/(3*r + 1) + a*x*x^(3*r)*e^3/(3*r + 1)

________________________________________________________________________________________

maple [C]  time = 0.49, size = 4023, normalized size = 23.80 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d+e*x^r)^3*(b*ln(c*x^n)+a),x)

[Out]

b*x*(2*e^3*r^2*(x^r)^3+9*d*e^2*r^2*(x^r)^2+3*e^3*r*(x^r)^3+6*d^3*r^3+18*d^2*e*r^2*x^r+12*d*e^2*r*(x^r)^2+e^3*(
x^r)^3+11*d^3*r^2+15*d^2*e*r*x^r+3*d*e^2*(x^r)^2+6*d^3*r+3*d^2*e*x^r+d^3)/(1+3*r)/(2*r+1)/(r+1)*ln(x^n)-1/2*x*
(-264*a*d^3*r^5-386*a*d^3*r^4+171*I*Pi*b*d*e^2*r^4*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)*(x^r)^2+72*b*d^3*n*r^6+
264*b*d^3*n*r^5+386*b*d^3*n*r^4-2*a*e^3*(x^r)^3-2*a*d^3+9*I*Pi*b*e^3*r*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)*(x^
r)^3-141*I*Pi*b*d^2*e*r^2*csgn(I*x^n)*csgn(I*c*x^n)^2*x^r-30*I*Pi*b*d*e^2*r*csgn(I*c*x^n)^2*csgn(I*c)*(x^r)^2-
72*ln(c)*b*d^3*r^6-264*ln(c)*b*d^3*r^5-386*ln(c)*b*d^3*r^4-288*ln(c)*b*d^3*r^3-116*ln(c)*b*d^3*r^2-24*ln(c)*b*
d^3*r-72*a*d^3*r^6+2*b*d^3*n-24*a*e^3*r^5*(x^r)^3-80*a*e^3*r^4*(x^r)^3-2*ln(c)*b*e^3*(x^r)^3+2*b*e^3*n*(x^r)^3
-102*a*e^3*r^3*(x^r)^3-62*a*e^3*r^2*(x^r)^3-18*a*e^3*r*(x^r)^3-6*a*d*e^2*(x^r)^2-6*a*d^2*e*x^r+114*I*Pi*b*d*e^
2*r^2*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)*(x^r)^2-2*b*d^3*ln(c)+288*b*d^3*n*r^3+116*b*d^3*n*r^2+24*b*d^3*n*r-1
32*I*Pi*b*d^3*r^5*csgn(I*x^n)*csgn(I*c*x^n)^2-I*Pi*b*e^3*csgn(I*c*x^n)^2*csgn(I*c)*(x^r)^3-58*I*Pi*b*d^3*r^2*c
sgn(I*x^n)*csgn(I*c*x^n)^2-288*a*d^3*r^3-116*a*d^3*r^2-24*a*d^3*r+132*I*Pi*b*d^3*r^5*csgn(I*c*x^n)^3-60*ln(c)*
b*d*e^2*r*(x^r)^2-582*ln(c)*b*d^2*e*r^3*x^r-282*ln(c)*b*d^2*e*r^2*x^r-66*ln(c)*b*d^2*e*r*x^r-408*ln(c)*b*d*e^2
*r^3*(x^r)^2-228*ln(c)*b*d*e^2*r^2*(x^r)^2+60*b*d^2*e*n*r*x^r+132*b*d*e^2*n*r^2*(x^r)^2+222*b*d^2*e*n*r^2*x^r-
291*I*Pi*b*d^2*e*r^3*csgn(I*c*x^n)^2*csgn(I*c)*x^r-171*I*Pi*b*d*e^2*r^4*csgn(I*x^n)*csgn(I*c*x^n)^2*(x^r)^2-17
1*I*Pi*b*d*e^2*r^4*csgn(I*c*x^n)^2*csgn(I*c)*(x^r)^2-51*I*Pi*b*e^3*r^3*csgn(I*x^n)*csgn(I*c*x^n)^2*(x^r)^3-51*
I*Pi*b*e^3*r^3*csgn(I*c*x^n)^2*csgn(I*c)*(x^r)^3+58*I*Pi*b*d^3*r^2*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)+144*I*P
i*b*d^3*r^3*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)+I*Pi*b*d^3*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)-36*I*Pi*b*d^3*r
^6*csgn(I*c*x^n)^2*csgn(I*c)+3*I*Pi*b*d*e^2*csgn(I*c*x^n)^3*(x^r)^2-I*Pi*b*e^3*csgn(I*x^n)*csgn(I*c*x^n)^2*(x^
r)^3-30*I*Pi*b*d*e^2*r*csgn(I*x^n)*csgn(I*c*x^n)^2*(x^r)^2+3*I*Pi*b*d*e^2*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)*
(x^r)^2+31*I*Pi*b*e^3*r^2*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)*(x^r)^3+6*b*d^2*e*n*x^r-408*a*d*e^2*r^3*(x^r)^2-
228*a*d*e^2*r^2*(x^r)^2-60*a*d*e^2*r*(x^r)^2-582*a*d^2*e*r^3*x^r-282*a*d^2*e*r^2*x^r+288*I*Pi*b*d^2*e*r^4*csgn
(I*x^n)*csgn(I*c*x^n)*csgn(I*c)*x^r+171*I*Pi*b*d*e^2*r^4*csgn(I*c*x^n)^3*(x^r)^2+I*Pi*b*e^3*csgn(I*x^n)*csgn(I
*c*x^n)*csgn(I*c)*(x^r)^3+40*I*Pi*b*e^3*r^4*csgn(I*c*x^n)^3*(x^r)^3-193*I*Pi*b*d^3*r^4*csgn(I*x^n)*csgn(I*c*x^
n)^2+54*I*Pi*b*d*e^2*r^5*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)*(x^r)^2+108*I*Pi*b*d^2*e*r^5*csgn(I*x^n)*csgn(I*c
*x^n)*csgn(I*c)*x^r-54*I*Pi*b*d*e^2*r^5*csgn(I*x^n)*csgn(I*c*x^n)^2*(x^r)^2+132*I*Pi*b*d^3*r^5*csgn(I*x^n)*csg
n(I*c*x^n)*csgn(I*c)-12*I*Pi*b*d^3*r*csgn(I*c*x^n)^2*csgn(I*c)+12*I*Pi*b*e^3*r^5*csgn(I*c*x^n)^3*(x^r)^3-36*I*
Pi*b*d^3*r^6*csgn(I*x^n)*csgn(I*c*x^n)^2-132*I*Pi*b*d^3*r^5*csgn(I*c*x^n)^2*csgn(I*c)-144*I*Pi*b*d^3*r^3*csgn(
I*c*x^n)^2*csgn(I*c)-204*I*Pi*b*d*e^2*r^3*csgn(I*x^n)*csgn(I*c*x^n)^2*(x^r)^2-204*I*Pi*b*d*e^2*r^3*csgn(I*c*x^
n)^2*csgn(I*c)*(x^r)^2-291*I*Pi*b*d^2*e*r^3*csgn(I*x^n)*csgn(I*c*x^n)^2*x^r+288*I*Pi*b*d^2*e*r^4*csgn(I*c*x^n)
^3*x^r+193*I*Pi*b*d^3*r^4*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)+193*I*Pi*b*d^3*r^4*csgn(I*c*x^n)^3+I*Pi*b*d^3*cs
gn(I*c*x^n)^3+24*b*e^3*n*r^3*(x^r)^3-108*a*d*e^2*r^5*(x^r)^2-342*a*d*e^2*r^4*(x^r)^2-216*a*d^2*e*r^5*x^r-576*a
*d^2*e*r^4*x^r+26*b*e^3*n*r^2*(x^r)^3+12*b*e^3*n*r*(x^r)^3+6*b*d*e^2*n*(x^r)^2-33*I*Pi*b*d^2*e*r*csgn(I*x^n)*c
sgn(I*c*x^n)^2*x^r-33*I*Pi*b*d^2*e*r*csgn(I*c*x^n)^2*csgn(I*c)*x^r+3*I*Pi*b*d^2*e*csgn(I*x^n)*csgn(I*c*x^n)*cs
gn(I*c)*x^r-141*I*Pi*b*d^2*e*r^2*csgn(I*c*x^n)^2*csgn(I*c)*x^r+8*b*e^3*n*r^4*(x^r)^3-66*a*d^2*e*r*x^r-6*ln(c)*
b*d^2*e*x^r-6*ln(c)*b*d*e^2*(x^r)^2-24*ln(c)*b*e^3*r^5*(x^r)^3-80*ln(c)*b*e^3*r^4*(x^r)^3-102*ln(c)*b*e^3*r^3*
(x^r)^3-62*ln(c)*b*e^3*r^2*(x^r)^3-18*ln(c)*b*e^3*r*(x^r)^3-9*I*Pi*b*e^3*r*csgn(I*c*x^n)^2*csgn(I*c)*(x^r)^3+1
41*I*Pi*b*d^2*e*r^2*csgn(I*c*x^n)^3*x^r+30*I*Pi*b*d*e^2*r*csgn(I*c*x^n)^3*(x^r)^2+204*I*Pi*b*d*e^2*r^3*csgn(I*
c*x^n)^3*(x^r)^2-58*I*Pi*b*d^3*r^2*csgn(I*c*x^n)^2*csgn(I*c)+54*I*Pi*b*d*e^2*r^5*csgn(I*c*x^n)^3*(x^r)^2+108*I
*Pi*b*d^2*e*r^5*csgn(I*c*x^n)^3*x^r-288*I*Pi*b*d^2*e*r^4*csgn(I*x^n)*csgn(I*c*x^n)^2*x^r-114*I*Pi*b*d*e^2*r^2*
csgn(I*x^n)*csgn(I*c*x^n)^2*(x^r)^2-114*I*Pi*b*d*e^2*r^2*csgn(I*c*x^n)^2*csgn(I*c)*(x^r)^2+51*I*Pi*b*e^3*r^3*c
sgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)*(x^r)^3-108*I*Pi*b*d^2*e*r^5*csgn(I*x^n)*csgn(I*c*x^n)^2*x^r-108*I*Pi*b*d^2
*e*r^5*csgn(I*c*x^n)^2*csgn(I*c)*x^r+12*I*Pi*b*e^3*r^5*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)*(x^r)^3+12*I*Pi*b*d
^3*r*csgn(I*c*x^n)^3-I*Pi*b*d^3*csgn(I*x^n)*csgn(I*c*x^n)^2-I*Pi*b*d^3*csgn(I*c*x^n)^2*csgn(I*c)+144*I*Pi*b*d^
3*r^3*csgn(I*c*x^n)^3+I*Pi*b*e^3*csgn(I*c*x^n)^3*(x^r)^3+58*I*Pi*b*d^3*r^2*csgn(I*c*x^n)^3+141*I*Pi*b*d^2*e*r^
2*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)*x^r+30*I*Pi*b*d*e^2*r*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)*(x^r)^2-144*I*
Pi*b*d^3*r^3*csgn(I*x^n)*csgn(I*c*x^n)^2-12*I*Pi*b*d^3*r*csgn(I*x^n)*csgn(I*c*x^n)^2-40*I*Pi*b*e^3*r^4*csgn(I*
x^n)*csgn(I*c*x^n)^2*(x^r)^3-40*I*Pi*b*e^3*r^4*csgn(I*c*x^n)^2*csgn(I*c)*(x^r)^3-288*I*Pi*b*d^2*e*r^4*csgn(I*c
*x^n)^2*csgn(I*c)*x^r+40*I*Pi*b*e^3*r^4*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)*(x^r)^3+48*b*d*e^2*n*r*(x^r)^2-108
*ln(c)*b*d*e^2*r^5*(x^r)^2-342*ln(c)*b*d*e^2*r^4*(x^r)^2-216*ln(c)*b*d^2*e*r^5*x^r-576*ln(c)*b*d^2*e*r^4*x^r+5
4*b*d*e^2*n*r^4*(x^r)^2+144*b*d*e^2*n*r^3*(x^r)^2+216*b*d^2*e*n*r^4*x^r+360*b*d^2*e*n*r^3*x^r-31*I*Pi*b*e^3*r^
2*csgn(I*c*x^n)^2*csgn(I*c)*(x^r)^3+291*I*Pi*b*d^2*e*r^3*csgn(I*c*x^n)^3*x^r+114*I*Pi*b*d*e^2*r^2*csgn(I*c*x^n
)^3*(x^r)^2-9*I*Pi*b*e^3*r*csgn(I*x^n)*csgn(I*c*x^n)^2*(x^r)^3+9*I*Pi*b*e^3*r*csgn(I*c*x^n)^3*(x^r)^3+31*I*Pi*
b*e^3*r^2*csgn(I*c*x^n)^3*(x^r)^3+51*I*Pi*b*e^3*r^3*csgn(I*c*x^n)^3*(x^r)^3+3*I*Pi*b*d^2*e*csgn(I*c*x^n)^3*x^r
+33*I*Pi*b*d^2*e*r*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)*x^r+291*I*Pi*b*d^2*e*r^3*csgn(I*x^n)*csgn(I*c*x^n)*csgn
(I*c)*x^r+204*I*Pi*b*d*e^2*r^3*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)*(x^r)^2-54*I*Pi*b*d*e^2*r^5*csgn(I*c*x^n)^2
*csgn(I*c)*(x^r)^2+33*I*Pi*b*d^2*e*r*csgn(I*c*x^n)^3*x^r-3*I*Pi*b*d*e^2*csgn(I*c*x^n)^2*csgn(I*c)*(x^r)^2+12*I
*Pi*b*d^3*r*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)+36*I*Pi*b*d^3*r^6*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)-3*I*Pi*b
*d*e^2*csgn(I*x^n)*csgn(I*c*x^n)^2*(x^r)^2-3*I*Pi*b*d^2*e*csgn(I*x^n)*csgn(I*c*x^n)^2*x^r-3*I*Pi*b*d^2*e*csgn(
I*c*x^n)^2*csgn(I*c)*x^r-31*I*Pi*b*e^3*r^2*csgn(I*x^n)*csgn(I*c*x^n)^2*(x^r)^3-12*I*Pi*b*e^3*r^5*csgn(I*x^n)*c
sgn(I*c*x^n)^2*(x^r)^3-12*I*Pi*b*e^3*r^5*csgn(I*c*x^n)^2*csgn(I*c)*(x^r)^3-193*I*Pi*b*d^3*r^4*csgn(I*c*x^n)^2*
csgn(I*c)+36*I*Pi*b*d^3*r^6*csgn(I*c*x^n)^3)/(1+3*r)^2/(2*r+1)^2/(r+1)^2

________________________________________________________________________________________

maxima [A]  time = 1.44, size = 220, normalized size = 1.30 \[ -b d^{3} n x + b d^{3} x \log \left (c x^{n}\right ) + a d^{3} x + \frac {b e^{3} x^{3 \, r + 1} \log \left (c x^{n}\right )}{3 \, r + 1} + \frac {3 \, b d e^{2} x^{2 \, r + 1} \log \left (c x^{n}\right )}{2 \, r + 1} + \frac {3 \, b d^{2} e x^{r + 1} \log \left (c x^{n}\right )}{r + 1} - \frac {b e^{3} n x^{3 \, r + 1}}{{\left (3 \, r + 1\right )}^{2}} + \frac {a e^{3} x^{3 \, r + 1}}{3 \, r + 1} - \frac {3 \, b d e^{2} n x^{2 \, r + 1}}{{\left (2 \, r + 1\right )}^{2}} + \frac {3 \, a d e^{2} x^{2 \, r + 1}}{2 \, r + 1} - \frac {3 \, b d^{2} e n x^{r + 1}}{{\left (r + 1\right )}^{2}} + \frac {3 \, a d^{2} e x^{r + 1}}{r + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x^r)^3*(a+b*log(c*x^n)),x, algorithm="maxima")

[Out]

-b*d^3*n*x + b*d^3*x*log(c*x^n) + a*d^3*x + b*e^3*x^(3*r + 1)*log(c*x^n)/(3*r + 1) + 3*b*d*e^2*x^(2*r + 1)*log
(c*x^n)/(2*r + 1) + 3*b*d^2*e*x^(r + 1)*log(c*x^n)/(r + 1) - b*e^3*n*x^(3*r + 1)/(3*r + 1)^2 + a*e^3*x^(3*r +
1)/(3*r + 1) - 3*b*d*e^2*n*x^(2*r + 1)/(2*r + 1)^2 + 3*a*d*e^2*x^(2*r + 1)/(2*r + 1) - 3*b*d^2*e*n*x^(r + 1)/(
r + 1)^2 + 3*a*d^2*e*x^(r + 1)/(r + 1)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (d+e\,x^r\right )}^3\,\left (a+b\,\ln \left (c\,x^n\right )\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^r)^3*(a + b*log(c*x^n)),x)

[Out]

int((d + e*x^r)^3*(a + b*log(c*x^n)), x)

________________________________________________________________________________________

sympy [A]  time = 22.76, size = 325, normalized size = 1.92 \[ a d^{3} x + 3 a d^{2} e \left (\begin {cases} \frac {x^{r + 1}}{r + 1} & \text {for}\: r \neq -1 \\\log {\relax (x )} & \text {otherwise} \end {cases}\right ) + 3 a d e^{2} \left (\begin {cases} \frac {x^{2 r + 1}}{2 r + 1} & \text {for}\: 2 r \neq -1 \\\log {\relax (x )} & \text {otherwise} \end {cases}\right ) + a e^{3} \left (\begin {cases} \frac {x^{3 r + 1}}{3 r + 1} & \text {for}\: 3 r \neq -1 \\\log {\relax (x )} & \text {otherwise} \end {cases}\right ) - b d^{3} n x + b d^{3} x \log {\left (c x^{n} \right )} - 3 b d^{2} e n \left (\begin {cases} \frac {\begin {cases} \frac {x x^{r}}{r + 1} & \text {for}\: r \neq -1 \\\log {\relax (x )} & \text {otherwise} \end {cases}}{r + 1} & \text {for}\: r > -\infty \wedge r < \infty \wedge r \neq -1 \\\frac {\log {\relax (x )}^{2}}{2} & \text {otherwise} \end {cases}\right ) + 3 b d^{2} e \left (\begin {cases} \frac {x^{r + 1}}{r + 1} & \text {for}\: r \neq -1 \\\log {\relax (x )} & \text {otherwise} \end {cases}\right ) \log {\left (c x^{n} \right )} - 3 b d e^{2} n \left (\begin {cases} \frac {\begin {cases} \frac {x x^{2 r}}{2 r + 1} & \text {for}\: r \neq - \frac {1}{2} \\\log {\relax (x )} & \text {otherwise} \end {cases}}{2 r + 1} & \text {for}\: r > -\infty \wedge r < \infty \wedge r \neq - \frac {1}{2} \\\frac {\log {\relax (x )}^{2}}{2} & \text {otherwise} \end {cases}\right ) + 3 b d e^{2} \left (\begin {cases} \frac {x^{2 r + 1}}{2 r + 1} & \text {for}\: 2 r \neq -1 \\\log {\relax (x )} & \text {otherwise} \end {cases}\right ) \log {\left (c x^{n} \right )} - b e^{3} n \left (\begin {cases} \frac {\begin {cases} \frac {x x^{3 r}}{3 r + 1} & \text {for}\: r \neq - \frac {1}{3} \\\log {\relax (x )} & \text {otherwise} \end {cases}}{3 r + 1} & \text {for}\: r > -\infty \wedge r < \infty \wedge r \neq - \frac {1}{3} \\\frac {\log {\relax (x )}^{2}}{2} & \text {otherwise} \end {cases}\right ) + b e^{3} \left (\begin {cases} \frac {x^{3 r + 1}}{3 r + 1} & \text {for}\: 3 r \neq -1 \\\log {\relax (x )} & \text {otherwise} \end {cases}\right ) \log {\left (c x^{n} \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x**r)**3*(a+b*ln(c*x**n)),x)

[Out]

a*d**3*x + 3*a*d**2*e*Piecewise((x**(r + 1)/(r + 1), Ne(r, -1)), (log(x), True)) + 3*a*d*e**2*Piecewise((x**(2
*r + 1)/(2*r + 1), Ne(2*r, -1)), (log(x), True)) + a*e**3*Piecewise((x**(3*r + 1)/(3*r + 1), Ne(3*r, -1)), (lo
g(x), True)) - b*d**3*n*x + b*d**3*x*log(c*x**n) - 3*b*d**2*e*n*Piecewise((Piecewise((x*x**r/(r + 1), Ne(r, -1
)), (log(x), True))/(r + 1), (r > -oo) & (r < oo) & Ne(r, -1)), (log(x)**2/2, True)) + 3*b*d**2*e*Piecewise((x
**(r + 1)/(r + 1), Ne(r, -1)), (log(x), True))*log(c*x**n) - 3*b*d*e**2*n*Piecewise((Piecewise((x*x**(2*r)/(2*
r + 1), Ne(r, -1/2)), (log(x), True))/(2*r + 1), (r > -oo) & (r < oo) & Ne(r, -1/2)), (log(x)**2/2, True)) + 3
*b*d*e**2*Piecewise((x**(2*r + 1)/(2*r + 1), Ne(2*r, -1)), (log(x), True))*log(c*x**n) - b*e**3*n*Piecewise((P
iecewise((x*x**(3*r)/(3*r + 1), Ne(r, -1/3)), (log(x), True))/(3*r + 1), (r > -oo) & (r < oo) & Ne(r, -1/3)),
(log(x)**2/2, True)) + b*e**3*Piecewise((x**(3*r + 1)/(3*r + 1), Ne(3*r, -1)), (log(x), True))*log(c*x**n)

________________________________________________________________________________________